How to Read the Crosswalk Document

This West Virginia Crosswalk document is designed to help readers easily understand the similarities and differences between the Next Generation (NxG) WV Content Standards and Objectives for Mathematics, which have been aligned with the *Common Core State Standards for Mathematics*, and the current 21st Century Content Standards and Objectives (CSOs) for Mathematics in WV Schools.

Grade Change (\triangle) Next Generation WV Objective – WV 21st Century Objective.

Positive (+) Grade Change – Content moving to higher grade.

Negative (-) Grade Change – Content moving to lower grade

NxG WV State Objective Aligned to CCSS	WV 21st Century Objective	Grade△	Alignment	moving to lower grade
	This objective is the currently adopted objective in WV Public Schools.	+1 Positive Grade change; Content moving to the next higher grade 0 No change -1 Negative Grade change; Content moving to previous or lower grade	Index 3: Excellent 2: Partial 1: Weak 0: No Match	The comment section will provide the reader with specific information relevant to the crosswalk between the standards identified. The intent is to provide the reader specific information relevant to any changes in student expectations.

High School Mathematics--Math 3

How to Read the Crosswalk Document

The West Virginia Crosswalk document is designed to help readers easily understand the similarities and differences between the 21st Century Content Standards and Objectives for English Language Arts and Mathematics in WV Schools and the Next Generation WV Content Standards and Objectives for English Language Arts and Mathematics that have been aligned with the *Common Core State Standards for English Language Arts and Literacy in History/Social Studies, Science and Technical Subjects* and the *Common Core State Standards for Mathematics*.

NxG WV State Objective Aligned to CCSS	WV 21st Century Objective	Grade △	Alignment	Comment
M.3HS.IC.1 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	 M.O.8.5.5 draw inferences, make conjectures and construct convincing arguments involving different effects that changes in data values have on measures of central tendency misuses of statistical or numeric information, based on data analysis of same and different sets of data. 	+3	3	The NxG WV objective incorporates technology as a tool.
(While students may have heard of the normal distribution, it is unlikely that they will have prior experience	M.O.A1.2.19 gather data to create histograms, box plots, scatter plots and normal distribution curves and use them to draw and support conclusions about the	+2	2	The NxG WV objective incorporates technology as a tool and emphasizes that there are data sets for which such a procedure is not appropriate.

using it to make specific estimates. Build on students' understanding of data distributions to help them see how the normal distribution uses area to make estimates of frequencies (which can be expressed as probabilities). Emphasize that only some data are well described by a normal distribution.)	data.			
M.3HS.IC.2 Understand that statistics allows inferences to be made about population parameters based on a random sample from that population.	M.O.PC.5.1 identify a real life situation that exhibits characteristics of exponential or logistic growth or decay; pose a question; make a hypothesis as to the answer; develop, justify, and implement a method to collect, organize, and analyze related data; extend the nature of collected, discrete data to that of a continuous function that describes the known data set; generalize the results to make a conclusion; compare the hypothesis and the conclusion; present the project numerically, analytically, graphically and verbally using the predictive and analytic tools of precalculus (with and without technology).	-1	1	The NxG WV objective recognizes that a random sample is a legitimate representation of a larger population.
M.3HS.IC.3 Decide if a specified model is consistent with results from a given datagenerating process, e.g., using	M.O.A1.2.20 design experiments to model and solve problems using the concepts of sample space and probability distribution.	+2	3	The NxG WV objective leaves the analysis process open-ended.
simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question	M.O.PC.5.1 identify a real life situation that exhibits characteristics of exponential or logistic growth or decay; pose a question; make a hypothesis as to the answer;	-1	3	The NxG WV objective leaves the analysis process open-ended.

the model? (Include comparing theoretical and empirical results to evaluate the effectiveness of a treatment.)	develop, justify, and implement a method to collect, organize, and analyze related data; extend the nature of collected, discrete data to that of a continuous function that describes the known data set; generalize the results to make a conclusion; compare the hypothesis and the conclusion; present the project numerically, analytically, graphically and verbally using the predictive and analytic tools of precalculus (with and without technology).			
M.3HS.IC.4 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. (Ways of collecting data and use graphical displays and summary statistics to make comparisons. These ideas are revisited with a focus on how the way in which data is collected determines the scope and nature of the conclusions that can be drawn from that data. The concept of statistical significance is developed informally through simulation as meaning a result that is unlikely to have occurred solely as a result of random selection in sampling or random assignment in an experiment.	M.O.PC.5.1 identify a real life situation that exhibits characteristics of exponential or logistic growth or decay; pose a question; make a hypothesis as to the answer; develop, justify, and implement a method to collect, organize, and analyze related data; extend the nature of collected, discrete data to that of a continuous function that describes the known data set; generalize the results to make a conclusion; compare the hypothesis and the conclusion; present the project numerically, analytically, graphically and verbally using the predictive and analytic tools of precalculus (with and without technology).	-1	1	The NxG WV objective recognizes that sample surveys, experiments, and observational studies may produce representations, but not necessarily exact models of populations.
M.3HS.IC.5 Use data from a	M.O.A1.2.20 design experiments to	+2	1	The NxG WV objective recognizes that the

sample survey to estimate a population mean or proportion; develop a margin of error	model and solve problems using the concepts of sample space and probability distribution.			population estimated from a sample survey may not be valid.
through the use of simulation models for random sampling. (Focus on the variability of results from experiments—that is, focus on statistics as a way of dealing with, not eliminating, inherent randomness).	M.O.PC.5.1 identify a real life situation that exhibits characteristics of exponential or logistic growth or decay; pose a question; make a hypothesis as to the answer; develop, justify, and implement a method to collect, organize, and analyze related data; extend the nature of collected, discrete data to that of a continuous function that describes the known data set; generalize the results to make a conclusion; compare the hypothesis and the conclusion; present the project numerically, analytically, graphically and verbally using the predictive and analytic tools of precalculus (with and without technology).	-1	1	The NxG WV objective recognizes that the population estimated from a sample survey may not be valid.
M.3HS.IC.6 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. (Focus on the variability of results from experiments—that is, focus on statistics as a way of dealing with, not eliminating, inherent randomness).	M.O.PC.5.1 identify a real life situation that exhibits characteristics of exponential or logistic growth or decay; pose a question; make a hypothesis as to the answer; develop, justify, and implement a method to collect, organize, and analyze related data; extend the nature of collected, discrete data to that of a continuous function that describes the known data set; generalize the results to make a conclusion; compare the hypothesis and the conclusion; present the project numerically, analytically, graphically and verbally using the predictive and analytic tools of precalculus (with and without	-1	1	The NxG WV objective recognizes that the population estimated from a randomized experiment may not be valid.

	technology).			
M.3HS.IC.7 Evaluate reports based on data.	M.O.PC.5.1 identify a real life situation that exhibits characteristics of exponential or logistic growth or decay; pose a question; make a hypothesis as to the answer; develop, justify, and implement a method to collect, organize, and analyze related data; extend the nature of collected, discrete data to that of a continuous function that describes the known data set; generalize the results to make a conclusion; compare the hypothesis and the conclusion; present the project numerically, analytically, graphically and verbally using the predictive and analytic tools of precalculus (with and without technology).	-1	3	The NxG WV objective leaves the analysis process open-ended.
M.3HS.IC.8 Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).			0	
M.3HS.IC.9 (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). (Extend to more complex probability models. Include situations such as those involving quality control or diagnostic tests that yields both false positive and false negative results.	M.O.A1.2.20 design experiments to model and solve problems using the concepts of sample space and probability distribution.	+2	3	The NxG WV objective emphasizes the importance of the analysis process.
M.3HS.PR.1 (+) Extend polynomial identities to the complex numbers. For example, rewrite x2 + 4 as (x +	M.O.A2.2.5 solve quadratic equations over the set of complex numbers: apply the techniques of factoring, completing the square,	0	3	The NxG WV objective extends beyond quadratics.

2i) (x – 2i). (Build on work with quadratics equations in Mathematics II. Limit to polynomials with real coefficients.)	and the quadratic formula; use the discriminate to determine the number and nature of the roots; identify the maxima and minima; use words, graphs, tables, and equations to generate and analyze solutions to practical problems.			
M.3HS.PR.2 (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.	M.O.PC.2.2 solve higher order polynomial equations utilizing techniques such as Descartes" Rule of Signs, upper and lower bounds, and the Rational Root Theorem.	-1	1	The NxG WV objective emphasizes the importance of using FTA in determining the number of factors in polynomial expressions.
 M.3HS.PR.3 Interpret expressions that represent a quantity in terms of its context.★ a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)ⁿ as the product of P and a factor not depending on P. 			0	
M.3HS.PR.4 Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$. (Extend to polynomial and rational expressions.)	M.O.A2.2.5 solve quadratic equations over the set of complex numbers: apply the techniques of factoring, completing the square, and the quadratic formula; use the discriminate to determine the number and nature of the roots; identify the maxima and minima; use words, graphs, tables, and equations to generate and analyze	0	1	The NxG WV objective expands quadratics to high order polynomials.

	solutions to practical problems.			
M.3HS.PR.5 Derive the	M.O.PC.2.6 solve problems	-1	3	The NxG WV objective emphasizes the
formula for the sum of a	involving the sum of finite and		Ü	derivation of the formula.
geometric series (when the	infinite sequences and series,			derivation of the fermidia.
common ratio is not 1), and	including Sigma notation.			
use the formula to solve	intologing organic metallion.			
problems. For example,				
calculate mortgage payments.				
★ (Consider extending to				
infinite geometric series in				
curricular implementations of				
this course description.)				
M.3HS.PR.6 Understand that	M.O.8.2.3 add and subtract	+3	3	The NxG WV objective emphasizes the
polynomials form a system	polynomials limited to two variables		-	comparisons of different fields in
analogous to the integers,	and positive exponents.			mathematics.
namely, they are closed under	M.O.A1.2.10 simplify and evaluate	+2	3	The NxG WV objective emphasizes the
the operations of addition,	algebraic expressions			comparisons of different fields in
subtraction, and multiplication;	add and subtract			mathematics.
add, subtract, and multiply	polynomials			
polynomials. (Extend beyond	 multiply and divide 			
the quadratic polynomials	binomials by binomials or			
found in Mathematics II.)	monomials.			
M.3HS.PR.7 Know and apply			0	
the Remainder Theorem: For a				
polynomial $p(x)$ and a number				
a, the remainder on division by				
x - a is $p(a)$, so $p(a) = 0$ if				
and only if $(x - a)$ is a factor of				
p(x).				
	M.O.PC.2.1 investigate and sketch	-1	2	The NxG WV objective stresses the
	the graphs of polynomials and			importance of finding zeroes when graphing
M.3HS.PR.8 Identify zeros of	rational functions by analyzing and			polynomial functions.
polynomials when suitable	using the characteristics of			
factorizations are available,	zeros, upper and lower bounds, y-			
and use the zeros to	intercepts, symmetry, asymptotes			
construct a rough graph of	and end behavior, maximum and			
the function defined by the	minimum points, and domain and			
polynomial.	range.	-1	4	The NyC W// chiestine stresses the
	M.O.PC.2.2 solve higher order	-1	1	The NxG WV objective stresses the
	polynomial equations utilizing			importance of finding zeroes when graphing

		1		T
	techniques such as Descartes"			polynomial functions.
	Rule of Signs, upper and lower			
	bounds, and the Rational Root			
	Theorem.			
M.3HS.PR.9 Prove polynomial			0	
identities and use them to				
describe numerical				
relationships. For example, the				
polynomial identity $(x^2 + y^2)^2 =$				
$(x^2 - y^2)^2 + (2xy)^2$ can be used				
to generate Pythagorean				
triples.(This cluster has many				
possibilities for optional				
enrichment, such as relating				
the example to the solution of				
the system $u^2+v^2=1$, $v = t(u+1)$,				
relating the Pascal triangle				
property of binomial				
coefficients to $(x+y)^{n+1} =$				
$(x+y)(x+y)^n$, deriving explicit				
formulas for the coefficients, or				
proving the binomial theorem				
by induction.)				
M.3HS.PR.10 (+) Know and	M.O.PC.2.3 relate Pascal's Triangle	-1	3	There is a strong correlation.
apply the Binomial Theorem	and the Binomial Theorem; use			
for the expansion of $(x + y)^n$ in	both to expand binomials with			
powers of x and y for a positive	positive integral exponents.			
integer <i>n</i> , where <i>x</i> and <i>y</i> are				
any numbers, with coefficients				
determined for example by				
Pascal's Triangle.				
M.3HS.PR.11 Rewrite simple	M.O.A1.2.16 simplify and evaluate	+2	3	The NxG WV objective compares polynomial
rational expressions in	rational expressions			long division to concepts from arithmetic long
different forms; write $a(x)/b(x)$	 add, subtract, multiply and 			division.
in the form $q(x) + r(x)/b(x)$,	divide			
where $a(x)$, $b(x)$, $q(x)$, and $r(x)$	 determine when an 			
are polynomials with the	expression is undefined.			
degree of r(x) less than the	•			
degree of $b(x)$, using				
inspection, long division, or, for				

	Т	1		T
the more complicated				
examples, a computer algebra				
system.(The limitations on				
rational functions apply to the				
rational expressions.)				
M.3HS.PR.12 (+) Understand	M.O.A1.2.16 simplify and evaluate	+2	3	The NxG WV objective compares rational
that rational expressions form	rational expressions			expressions to properties of rational
a system analogous to the	 add, subtract, multiply and 			numbers.
rational numbers, closed under	divide			
addition, subtraction,	 determine when an 			
multiplication, and division by a	expression is undefined.			
nonzero rational expression;				
add, subtract, multiply, and				
divide rational expressions.				
(Requires the general division				
algorithm for polynomials).				
M.3HS.PR.13 Solve simple			0	
rational and radical equations				
in one variable, and give				
examples showing how				
extraneous solutions may				
arise.(Extend to simple rational				
and radical equations)				
M.3HS.PR.14 Explain why the	M.O.A1.2.9 create and solve	+2	2	The NxG WV objective expands to higher
x-coordinates of the points	systems of linear equations			order polynomial equations.
where the graphs of the	graphically and numerically			
equations $y = f(x)$ and $y =$	using the elimination method and			
g(x) intersect are the	the substitution method , given a			
solutions of the equation $f(x)$	real-world situation.			
= g(x); find the solutions				
approximately, e.g., using				
technology to graph the				
functions, make tables of				
values, or find successive				
approximations. Include cases				
where $f(x)$ and/or $g(x)$ are				
linear, polynomial, rational,				
absolute value, exponential,				
and logarithmic functions.★				
(Include combinations of				

linear, polynomial, rational,				
radical, absolute value, and				
exponential functions.)				
M.3HS.PR.15 Graph functions expressed symbolically and	M.O.PC.2.1 investigate and sketch	-1	3	The NxG WV objective incorporates technology as a tool.
show key features of the	the graphs of polynomials and			lectificity as a tool.
graph, by hand in simple cases	rational functions by analyzing and using the characteristics of zeros,			
and using technology for more	upper and lower bounds, y-			
complicated cases.★ Graph	intercepts, symmetry, asymptotes			
polynomial functions,	and end behavior, maximum and			
identifying zeros when suitable	minimum points, and domain and			
factorizations are available.	range.			
and showing end	range.			
behavior.(Relate to the				
relationship between zeros of				
quadratic functions and their				
factored forms.)				
M.3HS.TF.1 Derive the	M.O.T.3.9 develop and test a	-1	3	The NxG WV objective is more specific in the
formula $A = 1/2$ ab $sin(C)$ for	hypothesis to find the area of a			method of derivation.
the area of a triangle by	triangle given the measures of two			
drawing an auxiliary line from a	sides and the included angle or the			
vertex perpendicular to the	measures of three sides (Heron''s			
opposite side.	formula) and use these formulas to			
	find total area of figures constructed			
	of multiple shapes.			
M.3HS.TF.2 (+) Prove the	M.O.T.3.8 investigate real-world	-1	2	The NxG WV objective expands using the
Laws of Sines and Cosines	problems within a project based			Law of Sines and Cosines to proof.
and use them to solve	investigation involving triangles			
problems . (With respect to the general case of the Laws of	using the trigonometric functions, the law of sines and			
Sines and Cosines, the	the law of cosines, justify and			
definitions of sine and cosine	present results.			
must be extended to obtuse	processing.			
angles.)				
M.3HS.TF.3 (+) Understand	M.O.T.3.8 investigate real-world	-1	3	There is a strong correlation.
and apply the Law of Sines	problems within a project based			
and the Law of Cosines to find	investigation involving triangles			
unknown measurements in	using the trigonometric functions,			
right and non-right triangles	the law of sines and the law of			
(e.g., surveying problems,	cosines, justify and present results.			

resultant forces).				
M.3HS.TF.4 Understand	M.O.T.3.2 convert angle measures	-1	3	The NxG WV objective stresses the
radian measure of an angle as	from degrees to radians (and vice			importance of using values from the unit
the length of the arc on the unit	versa) and apply this concept to			circle.
circle subtended by the angle.	 create a data set, analyze, 			
	and formulate a hypotheses			
	to test and develop			
	formulas for the arc length,			
	area of a sector, and			
	angular velocity and use the			
	formula for application in			
	the real-world.			
	compare and contrast the			
	concepts of angular velocity and linear velocity and			
	demonstrate by graphical or			
	algebraic means			
	relationship between them			
	and apply to real-world			
	problems.			
M.3HS.TF.5 Explain how the	M.O.T.3.4 justify and present the	-1	3	The NxG WV objective stresses the
unit circle in the coordinate	solutions of trigonometric			importance of using the values of the unit
plane enables the extension of	equations that include both			circle.
trigonometric functions to all	infinite and finite (over a			
real numbers, interpreted as	restricted domain) solutions.			
radian measures of angles				
traversed counterclockwise				
around the unit circle. M.3HS.TF.6 Choose	M.O.T.3.7 model periodic data sets	-1	3	There is a strong correlation.
trigonometric functions to	using graphs, tables, and equations	-1	3	There is a strong correlation.
model periodic phenomena	and use them to analyze real-world			
with specified amplitude,	problems such as electricity and			
frequency, and midline.★	harmonic motion.			
M.3HS.MM.1 Create equations	M.O.A1.2.2 create and solve multi-	+2	3	The NxG WV objective expands to quadratic
and inequalities in one variable	step linear equations, absolute	_	•	equations.
and use them to solve	value equations, and linear			
problems. Include equations	inequalities in one variable, (with			
arising from linear and	and without technology); apply skills			
quadratic functions, and simple	toward solving practical problems			
rational and exponential	such as distance, mixtures or			

functions. (Use all available types of functions to create such equations, including root functions, but constrain to simple cases.)	motion and judge the reasonableness of solutions.			
M.3HS.MM.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.(While functions will often be linear, exponential, or quadratic the types of problems should draw from more complex situations	M.O.A1.2.8 identify a real life situation that involves a constant rate of change; pose a question; make a hypothesis as to the answer; develop, justify, and implement a method to collect, organize, and analyze related data; extend the nature of collected, discrete data to that of a continuous linear function that describes the known data set; generalize the results to make a conclusion; compare the hypothesis and the conclusion; present the project numerically, analytically, graphically and verbally using the predictive and analytic tools of algebra (with and without technology).	+2	1	The NxG WV objective expands to three or more variables.
than those addressed in Mathematics I. For example, finding the equation of a line through a given point perpendicular to another line allows one to find the distance from a point to a line.)	M.O.A2.2.15 identify a real life situation that exhibits characteristics of change that can be modeled by a quadratic equations; pose a questions; make a hypothesis as to the answer; develop, justify, and implement a method to collect, organize and analyze related data; extend the nature of collected, discrete data to that of a continuous function that describes the known data set; generalize the results to make a conclusion; compare the hypothesis and the conclusion; present the project numerically, analytically, graphically and	0	2	The NxG WV objective expands to three or more variables.

	T	1		
	verbally using the predictive and			
	analytic tools of algebra (with and			
	without technology).			
M.3HS.MM.3 Represent	M.O.A2.2.10 solve and graph the	0	3	There is a strong correlation.
constraints by equations or	solution set of systems of linear			
inequalities, and by systems of	inequalities in two variables by			
equations and/or inequalities,	finding the maximum or minimum			
and interpret solutions as	values of a function over the			
viable or non-viable options in	feasible region using linear			
a modeling context. For	programming techniques.			
example, represent				
inequalities describing				
nutritional and cost constraints				
on combinations of different				
foods.				
M.3HS.MM.4 Rearrange	M.O.A1.2.3 evaluate data provided,	+2	3	There is a strong correlation.
formulas to highlight a quantity	given a real-world situation, select			
of interest, using the same	an appropriate literal equation and			
reasoning as in solving	solve for a needed variable.			
equations. For example,				
rearrange Ohm's law V = IR to				
highlight resistance R. (The				
example given applies to				
earlier instances of this				
standard, not to the current				
course.)				
M.3HS.MM.5 For a function	M.O.A1.2.7 analyze situations	+2	1	The NxG WV objective expands to higher
that models a relationship	and solve problems by			order equations.
between two quantities,	determining the equation of a line			
interpret key features of	given a graph of a line, two points			
graphs and tables in terms of	on the line, the slope and a point, or			
the quantities, and sketch	the slope and y intercept.			
graphs showing key features	M.O.A1.2.15 describe real life	+2	1	The NxG WV objective expands to higher
given a verbal description of	situations involving exponential			order equations.
the relationship. Key features	growth and decay equations			
include: intercepts; intervals	including y=2 ^x and y= (½) ^x ;			
where the function is	compare the equation with			
increasing, decreasing,	attributes of an associated table			
positive, or negative; relative	and graph to demonstrate an			
maximums and minimums;	understanding of their			

symmetries; end behavior; and	interrelationship.			
periodicity.★ (Emphasize the selection of a model function based on behavior of data and context.)	M.O.PC.2.1 investigate and sketch the graphs of polynomials and rational functions by analyzing and using the characteristics of zeros, upper and lower bounds, y-intercepts, symmetry, asymptotes and end behavior, maximum and minimum points, and domain and range.	-1	3	There is a strong correlation.
M.3HS.MM.6 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.★	M.O.A2.2.7 define a function and find its zeros; express the domain and range using interval notation; find the inverse of a function; find the value of a function for a given element in its domain; and perform basic operations on functions including composition of functions.	0	2	The NxG WV objective expands to relate the domain to the quantitative relationship it describes.
M.3HS.MM.7 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.★	M.O.A1.2.8 identify a real life situation that involves a constant rate of change; pose a question; make a hypothesis as to the answer; develop, justify, and implement a method to collect, organize, and analyze related data; extend the nature of collected, discrete data to that of a continuous linear function that describes the known data set; generalize the results to make a conclusion; compare the hypothesis and the conclusion; present the project numerically, analytically, graphically and verbally using the predictive and analytic tools of algebra (with and without technology).	+2	2	The NxG WV objective expands to average rate of change and higher order equations.

M.3HS.MM.8 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and	M.O.PC.2.1 investigate and sketch the graphs of polynomials and rational functions by analyzing and using the characteristics of zeros, upper and lower bounds, y-intercepts, symmetry, asymptotes and end behavior, maximum and minimum points, and domain and range.	-1	1	The NxG WV objective incorporates technology as a tool and expands to square root, cube root, piecewise, step, absolute value, exponential, logarithmic and trigonometric functions.
using technology for more complicated cases.★ a. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	M.O.A1.2.15 describe real life situations involving exponential growth and decay equations including y=2 ^x and y= (½) ^x ; compare the equation with attributes of an associated table and graph to demonstrate an understanding of their interrelationship.	+2	1	The NxG WV objective incorporates technology as a tool and expands to square root, cube root, piecewise, step, absolute value and trigonometric functions.
b. b. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline and amplitude. (Focus on applications and how	M.O.A2.2.8 analyze families of functions and their transformations; recognize linear, quadratic, radical, absolute value, step, piece-wise, and exponential functions; analyze connections among words, graphs, tables and equations when solving practical problems with and without technology.	0	3	The NxG WV objective expands to trigonometric functions.
key features relate to characteristics of a situation, making selection of a	M.O.T.3.7 model periodic data sets using graphs, tables, and equations and use them to analyze real-world problems such as electricity and harmonic motion.	-1	1	The NxG WV objective incorporates technology as a tool and expands to square root, cube root, piecewise, step, absolute value, exponential, and logarithmic functions.
particular type of function model appropriate.)	M.O.PC.2.4 establish and explain the inverse relationship between exponential and logarithmic functions; graph related functions and include their domain and range using interval notation.	-1	1	The NxG WV objective incorporates technology as a tool and expands to square root, cube root, piecewise, step, absolute value and trigonometric functions.
M.3HS.MM.9 Write a function defined by an expression in	M.O.A2.2.4 simplify expressions involving radicals and fractional	0	1	The NxG WV objective expands to all functions.

different but equivalent forms to reveal and explain different properties of the function.	exponents, convert between the two forms, and solve equations containing radicals and exponents. M.O.T.3.3 using various methods,	-1	1	The NxG WV objective expands to all
Tunction.	basic identities and graphical representation • verify trigonometric identities • prove the sum and difference to two angles, double-angles, and half-angle identities.			functions.
M.3HS.MM.10 Compare properties of two functions each represented in a different way (algebraically, graphically,	M.O.A1.2.21 use multiple representations, such as words, graphs, tables of values and equations, to solve practical problems; describe advantages and disadvantages of the use of each representation.	+2	3	There is a strong correlation.
numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	M.O.PC.2.11 use multiple representations, such as words, graphs, tables, and equations, to solve practical problems involving logarithmic, exponential, polynomial, rational, and radical functions; explain how the representations are related to each other, as well as to the problem.	-1	3	There is a strong correlation.
M.3HS.MM.11 Write a function that describes a relationship between two quantities.* Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the	M.O.A2.2.7 define a function and find its zeros; express the domain and range using interval notation; find the inverse of a function; find the value of a function for a given element in its domain; and perform basic operations on functions including composition of functions.	0	3	There is a strong correlation.

model. (Develop models for				
more complex or sophisticated				
situations than in previous				
courses.)				
M.3HS.MM.12 Identify the	M.O.A2.2.7 define a function and	0	1	The NxG WV objective relates the
effect on the graph of replacing	find its zeros; express the domain			parameters of functions to values that
f(x) by $f(x) + k$, k $f(x)$, $f(kx)$,	and range using interval notation;			determine transformations.
and $f(x + k)$ for specific values	find the inverse of a function; find			
of k (both positive and	the value of a function for a given			
negative); find the value of k	element in its domain; and perform			
given the graphs. Experiment	basic operations on functions			
with cases and illustrate an	including composition of functions.			
explanation of the effects on	M.O.A2.2.8 analyze families of	0	3	There is a strong correlation.
the graph using technology.	functions and their transformations:	· ·	3	There is a strong correlation.
Include recognizing even and	recognize linear, quadratic, radical,			
odd functions from their graphs	absolute value, step, piece-wise,			
and algebraic expressions for	and exponential functions; analyze			
them. (Use transformations of	connections among words, graphs,			
functions to find more optimum	tables and equations when solving			
models as students consider	practical problems with and without			
increasingly more complex	technology.			
situations. Note the effect of		-1		The NyC W// chiestive incorporates
multiple transformations on a	M.O.PC.3.1 graph functions and	-1	3	The NxG WV objective incorporates
single function and the	conic sections using transformations.			technology as a tool.
common effect of each	transformations.			
transformation across function				
types. Include functions				
defined only by graph.)	110 100 100 100 100 100 100 100 100 100			T
	M.O.A2.2.7 define a function and	0	3	There is a strong correlation.
M.3HS.MM.13 Find inverse	find its zeros; express the domain			
functions. Solve an equation of	and range using interval notation;			
the form $f(x) = c$ for a simple	find the inverse of a function; find			
function f that has an inverse	the value of a function for a given			
and write an expression for the	element in its domain; and perform			
inverse. For example, $f(x) = 2$	basic operations on functions			
$x3 \text{ or } f(x) = (x+1)/(x-1) \text{ for } x \neq 0$	including composition of functions.			
1(Extend to simple rational,	M.O.T.3.5 find the value of the	-1	1	The NxG WV objective expands to all
simple radical, and simple	inverse trigonometric functions			functions.
exponential functions.)	using special angle trigonometric			
	function values and technology.			

	 draw inferences of restricted domain to recognize and produce a graph of the inverse trigonometric functions. prove conjectures made about the solution of the equations such as x = sin (arcsin y), x = sin (arcos y) being sure to consider 			
	restrictions of the domain. M.O.PC.2.4 establish and explain the inverse relationship between exponential and logarithmic functions; graph related functions and include their domain and range using interval notation.	-1	1	The NxG WV objective expands to all functions.
M.3HS.MM.14 For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a , c , and d are numbers and the base b is 2, 10, or e ; evaluate the logarithm using technology. (Consider extending this unit to include the relationship between properties of logarithms and properties of exponents, such as the connection between the properties of exponents and the basic logarithm property that log $xy = log x + log y$.)	M.O.PC.2.4 establish and explain the inverse relationship between exponential and logarithmic functions; graph related functions and include their domain and range using interval notation.	-1	3	The NxG WV objective incorporates technology as a tool.
M.3HS.MM.15 Identify the shapes of two-dimensional cross-sections of three dimensional objects, and identify three-dimensional	M.O.G.3.16 derive and justify formulas for area, perimeter, surface area, and volume using nets and apply them to solve real-world problems.	+1	1	The NxG WV objective expands to identifying three-dimensional objects generated by rotations of two-dimensional objects.
objects generated by rotations of two-dimensional objects.	M.O.A2.2.12 analyze the conic sections; identify and sketch the graphs of a parabola, circle, ellipse,	0	3	There is a strong correlation.

	and hyperbola and convert between graphs and equations.		
M.3HS.MM.16 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★		0	
M.3HS.MM.17 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★		0	
M.3HS.MM.18 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★		0	